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• this talk is intended to start conversations and 
describe the kinds of issues encountered in 
DOE’s exascale performance modeling and 
simulation work   -- mostly observations, not a 
research talk
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• COMPLEXITY
• PROBLEMS
• ALGORITHMS
• MACHINES

S = S1 ^ S2 ^ ... ^ Sn

Asking questions, solving problems is recursive 
process 

Accepting a result means a related set of 
conditions is satisfied

Measured time for machine M to generate the 
language of the problem plus time to generate 
the language of the result plus the time to 
accept or reject the language of the result. 

M
LP LR

M

accept

reject

M

Concepts: Solving Problems with Computers

algorithm, a Turing machine that always halts
decidable problems are posed as a recursive language
undecidable problems have no algorithms that accept the language of the problem and generate / accept or reject an answer 
(Rice’s Theorem posits that non-trivial properties of r.e. languages are undecidable. Examples are emptiness, finiteness, regularity, 
and context freedom.)
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M

M

M

Lp

LR

accept

reject

• construct A, b given dim(A) dim(A)=dim(rank(1,A))=dim(rank(2,A))

• compute A=LU, solve Ly=b for y, solve Ux=y for x

• compute |A|inf , compute |x|2 , compute |b-Ax|2 , 
approximate ! (machine precision), 

form "= |b-Ax|2 / (|A|inf * |x|2 * !) ; 
if " ~  O(dim(A)) accept x, else reject x 

Metrics (?) to Judge Platforms; 
Extended Scope of Application Software

Q: How do the language of the problem and the accepted result relate to reality? 
Requires analysis beyond software analysis above and distinguishes computational 
science from system and library software development. Takes more time -needs 
refinement phase of algorithms and metrics.

Metric: the distance between two points in some topological space

Example Problem: solving algebraically 
determined systems of linear equations 
numerically (Linpack TOP500, FLOPs)

Ex2: BFS(Graph500,TEPS)
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Today can 
compute: 
(P1,A1,M1)

Want to 
compute: 
(P2,A2,M2)

Top Down Perspective : Application scientists / developers 

limits: 
• don’t really understand the problem,             ??

• don’t have the right method / representation (A2:             ??)

• capacity (|M| too simple) -too much complexity (|P2| >> |P1|)

• takes too long (T(P,A,M) big)
•fix it through software engineering and optimization
• expose parallelism to take advantage of existing computers

• need carefully defined measures of scientific progress, M

accept

reject

M
Lp

M
LR

how to get there?
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Bottom Up Perspective : 
How to Build a BIG, PROGRAMMABLE Computer 
w/in a Constrained Power Envelope

what is the design of M?
what is the interface to M?

... too many issues to address in 10 minutes
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Clear need for both generic and specific metrics / models
from both perspectives; also to connect the perspectives

Perpectives are different but events directly related
•hardware cannot generalize instruction and data miss rates 
from application to application

•applications cannot safely generalize program execution 
behavior from one architecture to another

SO, metrics are measures that help us reason about where 
things stand, how changes impact our goals

• models allow us to reason about and identify new metrics 
for existing infrastructure 

•models also allow us to reason about and contemplate new 
metrics in the absence of infrastructure, i.e. design
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ASCR’s Annual OMB Software Metric from FY04-FY11

•Game: satisfy the following efficiency measure

•vertical interrogation of DOE!s computing investments; generate complete 

before and after versions of cutting-edge production science software on 

cutting-edge computing platforms with reproducible, quantifiable enhancements

•position important (ie ASCAC selection process, usually from SciDAC or 

INCITE) software applications to solve complex problems on the most 

massively parallel open computing systems today 

•over 33 major software applications enhanced, i.e. 4 went on to win or be 

finalists in G. Bell prize, a couple of Nature or Science articles ensued; over 

200M CPU Hours for correction + problem execution analysis

(SC GG 3.1/2.5.2) Improve computational science capabilities, defined 

as the average annual percentage increase in the computational 

effectiveness (either by simulating the same problem in less time 

or simulating a larger problem in the same time) of a subset of 

application codes. Efficiency measure: X%
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ASCR OMB Software Benchmark Trends (FY04 - FY11)

climate research 4

condensed matter 4

fusion 5

high energy physics 3

nuclear 2

subsurface modeling 2

astrophysics 2

combustion chemistry 4

bioinformatics 1

math, data analytics 2

molecular dynamics, 
electronic structure

3

nuclear energy 1

Total 33

ref. my DOE ASCAC talks 
or contact me / DOE ASCR HQ for more info
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•the effort has made quantifiable advances to DOE ASCR!s missions
•state of the art approaches -> effective use of LCF resources 
•determine near term feasibility of application studies

•focal points 
•new / improve problem capabilities, efficiency, weak and strong scaling performance 
enhancements 
•determine new metrics, evaluate measuring techniques and tools
•identify deficiencies and provide solutions

•broad range of activities w/ over 200 collaborators
•sharpen / validate tools through use in production science scenarios
•pinpoint compiler related uses / misuses
•data formats and compositions in memory, in network, in file system
•i/o algorithms for massive data sets, small data sets in massively parallel envs 
•evaluate algorithms / numerics / physical representations 
•architectural adjustments 

•demonstrate leadership for application developers / programmers 

**see November 2011 ASCAC talk for specific examples, or any of the annual reports on record at ASCR.
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Measurements

•application specific measures / metrics (see bonus for examples)

•machine events

-clear dependence on tools / hardware support to monitor hardware components 

activated during program execution

--cycle count, disk accesses, floating point operation counts, instructions issued 

and retired, L2 data cache misses, maximum memory set size, number of 

loads / stores etc.

•derived measures

-efficiency, cycles per instruction (CPI) or floating point operations retired per 

second (FLOPs)

-computational costs, CPU Hours (relates execution time to processing 

elements), etc. 

•USE TOOLS to pinpoint insufficient parallelism, lock contention, and parallel 
overheads in threading and synchronization strategies
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Strong Scaling Weak Scaling Improve Efficiency

Machine
Events

Q2 Q4

INS 2.147E+15 2.1130E+15

FP_OP 5.896E+14 5.8947E+14

PEs 5632 11264

Time[s] 121.252233 57.222988

INS:
2113046508030116 /
2146627269408190 = .9843

FP_OP:
589469277576687 /
589624961638025 = .9997

PEs: 11264 / 5632 = 2

Time[s]: 
57.222988 / 121.252233 = .472

Machine
Events

Q2 Q4

INS 5.18E+17 1.93E+18

FP_OP 4.63E+17 1.81E+18

PEs 7808 31232

Time[s] 25339 23791

INS: 3.72

FP_OP: 3.92

PEs: 4

Time[s]: .938

NB: k= T(Q4)*PEs(Q4)/
T(Q2)*PEs(Q2) ~  3.756

Machine
Events

Q2 Q4

INS 3.16E+12 4.37E+11

FP_OP 5.50E+11 5.53E+11

PEs 1 1

L2DCM 823458808 34722900

Time[s] 826.494142 79.414198

INS: 0.1381 (7.239x)

FP_OP: 1.0053 (0.99475x)

PEs: 1

L2DCM: 0.0422 (23.715x)

Time[s]: 0.0961 (10.407x)

Enhancement Modes

•performance (improve efficiency, scalability - weak or strong)

-data structures / discretizations, algorithms, libraries, language enhancements, compilers

•scientific (better accuracy, improved predictive power)

-physical models, the problem representation, validity of inputs, and correctness of computed results
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Algorithm, machine strong scaling : 
 Q4 problem   :=  Q2 problem
 Q4 algorithm :=  Q2 algorithm
 Q4 machine   ~  k * Q2 machine
 Q4 time          ~  1/k * Q2 time

Algorithm enhancements, performance 
optimizations:

 Q4 problem   :=  Q2 problem
 Q4 algorithm  ~  enhanced Q2 algorithm
 Q4 machine   :=  Q2 machine
 Q4 time          ~  1/k * Q2 time

*Could consider other variations: algorithm and machine 
 are varied to achieve reduction of compute time 

“simulating the same 
problem in less time”

Algorithm, machine weak scaling (100%): 
 Q4 problem    ~  k * Q2 problem
 Q4 algorithm  :=  Q2 algorithm
 Q4 machine    ~  k * Q2 machine
 Q4 time          := Q2 time

Algorithm enhancements, performance 
optimizations:

 Q4 problem    ~  k * Q2 problem
 Q4 algorithm   ~ enhanced Q2 algorithm
 Q4 machine   := Q2 machine
 Q4 time          := Q2 time 

*Could consider other variations: problem, algorithm and 
 the machine are varied to achieve fixed time assertion

“simulating a larger 
problem in same time”

Computational Efficiency
• Total elapsed time to execute a problem instance with a specific software instance 
(algorithm) on a machine instance

• Parallel 
• e(n,p) := Tseq (n) / ( p * T(n,p) )

weighted:
(t*nPEs/DOF)_b/(t*nPEs/DOF)_e
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From the QCD community : test sm, predict ckm me, qgp thermal studies 

Metrics: 
Science cases: 

Tunable parameters: 

1.! Efficiency of  

Dirac inverter 
(multiply a complex 

3d matrix w/ a 3d 
vector w/accumulation) 

2.Computation of fermion 
force term (s) 

3.Evolution of trajectories 

w/ MC (s) 

4.Dollars per flop 

•!3 Green’s functions: 

Wilson, domain wall, 
Clover (Asqtad in MILC) 

•!Size of the sub-lattice, V_0 

•!Number of processors, N_p 

(N_p := lattice size / V_0) 

•!Parameters 

•! Horizontal resolution : T85 spectral truncation (128x256) 

•! Number of vertical levels:  26 

•! Number of advected constituents: 3 

•! Stable timestep: 10 min 

•! Output interval: 1 month 

•! CCSM CVS tag: cam3.0.19 vs cam3.2.19 

CCSM CAM study metric details 

•! Application Based Observables / Metrics  

•! Throughput: Simulated years per wall clock day : YPD 

•! Average time (sec) in dynamics  per day:  dynpkg 

•! Average time (sec) in physics/chemistry per day:  physics 

•! Average time (sec) in land model  per day:  land 

•! Average time (sec) in dynamics- physics data transpose per day: dp 

•! Average time (sec) in atm-land communication per day:  cl2ck 

•! Average time (sec)  to simulate a day:  stepon 

•ScalaBLAST, time / query / PE

•DCA/QMC, time / Green function 
update / slice

•LS3DF, time / DOF / SCF iteration

•LAMMPS, time / pairwise force / atom 

•Omega 3P, time / eigenmode / PE

•CCSM, simulated years / wall clock day

•VH-1, time / zone update / PE

•NCSM MC, time / nucleon / shell / 
sample / img step

•ENZO, time / time step (depth) / PE 

• VisIt, image construction / display time

•RAPTOR, time / cell / time step

•XGC1, time / time step / particle

•DCA++, time / disorder configuration

•PFLOTRAN, (time / DOF) / PE

•GTC-s, # particles / ( time / time step)

•CHIMERA, time / subcycled hydro step

•S3D, time / DOF / time step / PE

•MADNESS, time / reconstruction 
(precision)

•Denovo, time / transport step / 
unknown (cells,angles,moments,groups)
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1) System power -primary constraint (PUI, facility / total)

2) Memory bandwidth and capacity are not keeping pace

3) Concurrency 1000X increase in-node

4) Processor open question

5) Programming model compilers will not hide this

6) Algorithms need to minimize data movement, not flops

7) I/O bandwidth not on pace with machine speed 

8) Reliability and resiliency 

9) Bisection bandwidth limited by cost and energy

Performance is Limited by ...

ref. ASCR exascale mtg
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Need metrics to quantify the data related costs on and across nodes 
 

-refine performance measures for data movement and access costs as these dominate 

over floating point costs

• bandwidth, the number of cycles a core waits because the bus is not ready; as the measure gets large, it 

indicates that the bus is in high demand and loads or stores involving main memory will take longer

-provides means to reason about performance costs versus (bisection) bandwidth scaling (i.e. increased node 

counts)

• locality, the ratio of the peak versus measured capacity of each memory level (on/off chip) divided by access 

time in cycles

•i.e. consider ratio of gather and scatter costs in loops (A. Snavely, exascale planning meeting)

ref. ASCR exascale mtg
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Need extensions that relate performance to power; lead to novel optimization ideas

-extension of existing metrics to reason about power and performance tradeoffs, energy driven 
optimizations (i.e. DVFS)

-number of floating point operations per Watt (floating point dominated) 

-cost of loads or stores in bytes per Watt (data ops dominated)

-metric guided optimizations to simultaneously minimize power consumption and time to 

solution (IBM Zurich study)
-computational cost ~ f(time to solution) * energy

-f constant,  cost per execution event in Joules

-f linear, cost provides insight about appropriateness of hardware platform for application

-demand tools for power measurements
-memory (29%), network (29%), floating point unit (16%))  (distribution of power in HPC hardware (Kogge))

ref. ASCR exascale mtg

-relate cycle costs in memory 

refs to energy in Joules
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Need (?) Accurate, Scalable Tools at Thread Level 

1 PE, 4 nt / PE

Group / Function / Thread (max) 

===========================

Total

-----------------------------------------------

Time% 100.0%

Time 12.213947 secs

TOT_INS 

1037.779M/sec 

10063040357 instr

FP_INS 

222.330M/sec 

2155872263 ops

TOT_CYC 

9.697 secs 

21332826724 cycles

User time (approx) 100.0% Time

12.214 secs 

26870760748 cycles 

(2154299392)

THY
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Need (?) Accurate, Scalable Memory Tools 

i.e. detect memory leaks
•probe allocation points in calling 

context trees

•intercept every allocate and free

•mark the memory with the call 

path in which it was allocated, 

match the free back to the 

allocation point

•what about programs that are killed 

by the O/S or othe faults?

•need to log data prior to 

allocation to detect when a 

process is killed from external 

force 
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Need algorithms that Improve {ins,flop(s)} / byte (and don!t compromise 

accuracy or performance)

•J.J.M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem, Numer. Math. 36, 

177-195 (1981)

•F. Tisseur and J.J. Dongarra, Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal 

Eigenvalue Problem on Distributed Memory Architectures, lawn132 (1998)
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Mixed Precision Solvers -faster, 
controlled accuracy

Reliable Updates (Sleijpen and Van der Worst 1996) 
• Iterated residual diverges from true residual 
• Occasionally replace iterated residual with true residual 
• Also use second accumulator for solution vector 

Single-precision can be used to find double-precision result 
• GPU kernel is still bandwidth bound 
• Use half precision for inner solve? ref. M. Clark, NVIDIA

my PD, Saul Cohen -multigrid

Require solver tolerance beyond limit of single precision 
• DP is at least 2X slower 
• Use iterative refinement
Double precision done can be done on CPU or GPU
Disadvantage is each new single precision solve is a 
restart
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Need measures for detecting, mitigating, recovering from failures

• fail / continue
• hard / soft faults

• resiliency must go 
beyond check point / 
restart

•algorithm based 
fault tolerance 

COSTS 
/ TRADEOFFS ?

have to
go beyond 

single 
failure

ref P. Raghavan’s work
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Need measures for I/O operations for applications

Parameters set in the file system related to 

but independent from the problem parameters:

• Number of OSTs
1, 2, 4, 8, 16, 32

• Stripe size in BYTEs
1 MB, 2 MB, 4MB, 8 MB, 16 MB

• access pattern (round robin)

• Number of I/O PEs for spatial decomposition
kio ~ 1, 2, 3, 4, 6, 8

• Total number of I/O PEs is kio * nfld
since nfld =151, 151, 302, 453, 604, 906, 1208
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Apps Are Not Usually Dominated by FLOPs

Application 1 2 3 4 5 6 7 8

Instructions
Retired

1.99E+15 8.69E+17 1.86E+19 2.45E+18 1.24E+16 7.26E+16 8.29E+18 2.67E+18

Floating Point 
Ops

3.52E+11 1.27E+15 1.95E+18 2.28E+18 6.16E+15 4.15E+15 3.27E+17 1.44E+18

INS / FP_OP 5.64E+03 6.84E+02 9.56 1.08 2.02 17.5 25.3 1.85

REFERENCE FLOATING POINT INTENSE PROBLEM :: Dense Matrix Matrix Multiplication
C <--- a A B + b C :: OPERATIONAL COMPLEXITY : A[m,n] , B[n,p] , C[m,p] :: [ 8mpn + 13mp ] FLOP
E.g. m=n=p=1024 ---> 8603566080 FLOP  , measure 8639217664 
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Memory Wall Always There ...  

y = ! x + y :
3 loads, 1 store 
(more expensive than FP_OPs by a long shot)
2 floating point operations (maybe 1) on 3 operands

eg, double precision on the FY10 target platform:
(3 operands / 2 flop ) * (8 bytes / operand) * 6 core * 4 ( flop / cyc /core) * 2.6e9(cyc/sec) ~125 GBps 

... We don’t have this and to get it is $$$ ... how to achieve Sustainability??

BLAS 1: O(n)      operations on O(n)     operands
BLAS 2: O(n**2) operations on O(n**2) operands
BLAS 3: O(n**3) operations on O(n**2) operands

Computation: Theoretical peak: (# cpu cores) * (flops / cycle / core) * (cycles / second)

Memory: Theoretical peak: (bus width) * (bus speed) 
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Memory Issues

CPU waiting for memory hierarchy is bottom line of 
idle time 

•memory latency
•miss rates

•instruction stalls
•branch misprediction
•unresolved data dependencies

O/S stall times are substantial cost -not easily influenced
•misses 
•coping with interference from the application

•write references: how big should the write buffer 
be + queuing model 
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Memory Measurements

•first touches are expensive
•misses lead to repeated first touches
•repeated dynamic allocation / free lead to first 
touches

•costs can be measured
accesses / second (access rate)

x
N_{fractional miss ratio} / access

x
bytes / miss

:= bytes / second

• but, to be accurate requires average memory access 
times over the duration of program execution
•a program’s locality behavior is not constant during 
execution and is basically unique
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DRAM COSTS: Power = Capacity *  Voltage^2 * Frequency

Today’s Memories ... 
•  10^9 cells

•  cell capacitance < femto-farad

•  resistance O(tera-ohms)

Refresh Cycles ~ 64ms
• leakage

• reading drains the charge (read + recharge)

• stall cycle on bus > 11 cpu cycles 

Faster memory
• lower voltage --> decreases stability, 

• increase frequency --> $$$ as arrays get large 

•(i.e. more addressable memory) and voltage is 
     increased to assure stability ref. Drepper, What every Programmer Should Know about Memory

DRAM 

C, capacitor, keeps cell state

M, transistor, controls access to cell state

read the state of the cell the access line AL  is raised

-causes a current to flow on the data line DL  or not

write to the cell the data line DL  is appropriately set and AL is 

raised for a time long enough to charge or drain the capacitor
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SDR (PC100) ~ 
DRAM cell array 100MHz 
data transfer rate 100Mbps

DDR (PC1600) ~ moves 2X the data / clock (leading , falling) 
add “I/O” buffer (2 bits on data line) adjacent to DRAM cell array
pull two adjacent column cells per access over 2 line data bus
100 MHz X 64 bit / data bus X 2 data bus lines = 1600 MBps

DDR2 (PC6400) ~ moves 4X the data / clock 
double the bus frequency --> 2X bandwidth
double “I/O” buffer speed to match the bus
4 bits / clock on 4 line data bus
200MHz array; 400MHz bus; 800MHz FSB (effective freq)
200 MHz X 64 bit / data bus X 4 data bus lines = 6400 MBps
240 PIN addressing @ 1.8V 

*each stall cycle on the memory bus is > 11 cpu cycles even in the best systems 
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Reduced latency – With vastly more responders built into HMC, we expect lower queue 
delays and higher bank availability, which can provide a substantial system latency 
reduction, which is especially attractive in network system architectures.

Increased bandwidth — A single HMC can provide more than 15x the performance of a 
DDR3 module. Speed is increased by the very fast, innovative interface, unlike the slower 
parallel interface used in current DRAM modules.

Power reductions — HMC is exponentially more efficient than current memory, using 70% 
less energy per bit than DDR3.

Smaller physical systems — HMC’s stacked architecture uses nearly 90% less space 
than today’s RDIMMs.

Pliable to multiple platforms — Logic-layer flexibility allows HMC to be tailored to multiple 
platforms and applications.

HOW to DEAL 
w/ new Technologies:
Micron Hybrid Memory Cube
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Hierarchical caches to hide memory latencies

temporal locality
when a referenced resource is 
referenced again sometime in the near 
future

spatial locality
the chance of referencing a resource is 
higher if a resource near it was just 
referenced

Sample of Cache Discovery Test Results

cache test

1024
4096

16384
65536

262144
1.04858e+06

4.1943e+06
1.67772e+07

6.71089e+07
2.68435e+08

Size(B)

1
32

1024
32768

1.04858e+06
3.35544e+07

1.07374e+09

Stride(B)

20
40
60
80

100
120
140
160
180
200
220

Time(ns): r+w

Cache Coherency:

write-through, if cache line is written to, the processor also writes to main memory (at 
all times cache and memory are synchronized)

write-back, cache line is marked dirty, write back is delayed to when cache line is being 
evicted

>1 processor core is active (say in SMP) -all processors still have to see the same 
memory content; have to exchange CL when needed -includes the MC

write-combining (ie on graphics cards)
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• non-temporal writes, ie don’t cache the data writes since it won’t be used again 

soon (i.e. n-tuple initialization) 

• avoids reading cache line before write, avoids wasteful occupation of cache line and 
time for write (memset()); does not evict useful data

• sfence() compiler set barriers

• loop unrolling , transposing matrices 

• vectorization, 2,4,8 elements computed at the same time (SIMD) w/ multi-media 
extensions to ISA

• reordering elements so that elements that are used together are stored together -pack 
CL gaps w/ usable data (i.e. try to access structure elements in the order they are defined in 
the structure) 

• stack alignment, as the compiler generates code it actively aligns the stack inserting 
gaps where needed ... is not necessarily optimal -if statically defined arrays, there are tools 
that can improve the alignment; separating n-tuples may increase code complexity but 
improve performance

• function inlining, may enable compiler or hand -tuned instruction pipeline optimization 
(ie dead code elimination or value range propagation) ; especially true if a function is called 
only once

• prefetching, hardware, tries to predict cache misses -with 4K page sizes this is a hard 
problem and costly penalty if not well predicted; software (void _mm_prefetch(void *p, 
enum _mm_hint h) --_MM_HINT_NTA -when data is evicted from L1d -don’t write it to 
higher levels)

base / 
node 
focus

Use of Cache Inspired Basic Optimizations
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•reduce synchronization overheads in parallel loops

•improve data locality

source: K. Kennedy, Rice
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Going Beyond Instruction Level //ism to Loop Level

Optimally Maximizing Iteration-Level Loop Parallelism, D. Liu et al., IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

before, minimum 

nonzero edge weight = 1

after, minimum nonzero 

edge weight = 2

(re)moving 
dependencies
decreases stalls,
decreases time
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Challenge: Exploit Multi-core Hybrid / New Programming Methods

•MPI, processes spawn lightweight processes

•PGAS, partitioned global address space 

•OpenMP threads, directive based, #include <omp.h> , omp_set_num_threads();

•POSIX threads, #include <pthread.h> , pthread_create();  

•NVIDIA’s CUDA C, kernel execution (distinct executables)

•OpenCL, (abstract processing elements, compute units and devices -heterogeneous 
systems)

•OpenACC, directive / pragma based, compiler creates kernel 
    for execution on GPU (based on PGI Accelerator, M. Wolfe)

<-S> * <-d> cannot exceed the maximum number of CPUs per NUMA node

-lsize=12 MPI LWP DRAM
aprun -n <1-12>  1 - 12 1 2 * 2^30

aprun -n 2 -sn 2 -S 1 -d 6 2  1 - 6 12 * 2^30

aprun -n 1 -N 1 -d 16 1  1 - 12 24 * 2^30

X

X

X

X

X

X

X

X

X

X

X

X

X

no NUMA, 6 PEs/socket

NUMA + memory affinity

task based: Cilk for instance
other: Chapel
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external memory control

cpu integrated memory control

Concurrency is when processes 
or threads share hardware 
resources 

• ALU, adds, comparisons
• FPU, floating point operations
• L/S U, data, ins loads / stores
• Registers, fast memory; FPR, GPR, etc.
• PC, program counter -address in memory 
of instruction that is executing (control flow, 
fetch / decode in CPU)
• Memory interface, often L1 and L2 
caches 

CPU

other:
clock speed
buses
ISA (Intel x86 most popular, x86-64, ...)

improves performance for local data refs. 
-still forced to communicate / orchestrate for non-local

Tuesday, October 2, 2012



X

X

X

X

X

X

X

X

X

X

X

X

X

no NUMA, 6 PEs/socket

NUMA + memory affinity

threaded 

• cache contention, coherency

• atomicity 

• memory bandwidth

• scheduling, pinning to hardware 

make the FSB faster with increasing core count

Modified, local processor has 

only copy of data and modifies it

Exclusive, CL is not modified 

and not in another core!s cache 

Shared, CL not modified -might 

be in cache somewhere

Invalid, CL is invalid -not used

fork (create) / join overheads

*other processor’s activities are snooped on the address bus

Use of threads means coping with complicated issues 

need tools
identification of relevant observables
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ref. AMD,  Numerical Algorithms Group Ltd. 

•processor is 2 die + HT
•NUMA node is 2 processors

DATA flow
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1/20th the power 

++

•deeper memory, 
heterogeneous hardware, 
distinct binaries
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Other Basic Examples:
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[rochekj@clue-1]$ time ./xpt_pi 1 

1 threads: 
         pi = 3.14159  (3.141592653589970752) 

        walltime:= 12.2492 [s] 
        cpu:= 12.24 [s] 
12.247u 0.000s 0:12.25 99.9%    0+0k 0+0io 0pf+0w 

[rochekj@clue-1]$ time ./xpt_pi 2 
2 threads: 

         pi = 3.14159  (3.141592653590007167) 
        walltime:= 6.16762 [s] 
        cpu:= 12.27 [s] 

12.272u 0.000s 0:06.16 199.1%   0+0k 0+0io 0pf+0w 
[rochekj@clue-1]$ time ./xpt_pi 3 

3 threads: 
         pi = 3.14159  (3.141592653589914352) 
        walltime:= 4.13565 [s] 

        cpu:= 12.24 [s] 
12.249u 0.000s 0:04.13 296.3%   0+0k 0+0io 0pf+0w 

[rochekj@clue-1]$ time ./xpt_pi 4 
4 threads: 
         pi = 3.14159  (3.141592653589768247) 

        walltime:= 3.09586 [s] 
        cpu:= 12.22 [s] 

12.226u 0.000s 0:03.09 395.4%   0+0k 0+0io 0pf+0w 
[rochekj@clue-1]$ time ./xpt_pi 45 
45 threads: 

         pi = 3.14159  (3.141592653589790896) 
        walltime:= 3.13209 [s] 

        cpu:= 12.23 [s] 
12.230u 0.000s 0:03.13 390.7%   0+0k 0+0io 0pf+0w 

Multi-threaded versus GPU

i.e. apply operators F(derivatives) 
to plane wave based functions   

Pi = 3.1415926535 8979323846 2643383279…
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Computing in the Future

• programming too complex today
• smarter machines -better human machine 
interactions
• there are too many programming languages

• choose one and make it standard

• debugging means to fix errors in a program or 
a machine

• need automatic debugging

bonus, from R. Feynman 
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Computing in the Future

•make physical components in 3D not simply 
constrained to surface of a chip

•a device to detect defective elements
•automatically rewire to avoid defective 
elements 

bonus, from R. Feynman 
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parallel computers

energy consumption of machines
•could be made less with time varying voltage
•go slower but use less energy, allows for 
increases in hardware units

physical limits of physical devices
•reversible logic circuitry, Bennett, Landauer, 
Scientific American

•transistor can go forward and backward
•can recover input from output

Computing in the Future
bonus, from R. Feynman 
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